Saturday, October 22, 2011

The Big Bang: What really happened when Universe was born?

This article from space.com is very important for education and general knowledge.

Source: Yahoo 7 News
Space.com
October 22, 2011, 9:38 am

Our universe was born about 13.7 billion years ago but would we ever know what really made it as it is today?


Related Links






Our universe was born about 13.7 billion years ago in a massive expansion that blew space up like a gigantic balloon.

That, in a nutshell, is the Big Bang theory, which virtually all cosmologists and theoretical physicists endorse. The evidence supporting the idea is extensive and convincing. We know, for example, that the universe is still expanding even now, at an ever-accelerating rate.

Scientists have also discovered a predicted thermal imprint of the Big Bang, the universe-pervading cosmic microwave background radiation. And we don't see any objects obviously older than 13.7 billion years, suggesting that our universe came into being around that time.

"All of these things put the Big Bang on an extremely solid foundation," said astrophysicist Alex Filippenko of the University of California, Berkeley. "The Big Bang is an enormously successful theory."

So what does this theory teach us? What really happened at the birth of our universe, and how did it take the shape we observe today?

The beginning

Traditional Big Bang theory posits that our universe began with a singularity — a point of infinite density and temperature whose nature is difficult for our minds to grasp. However, this may not accurately reflect reality, researchers say, because the singularity idea is based on Einstein's theory of general relativity.

"The problem is, there's no reason whatsoever to believe general relativity in that regime," said Sean Carroll, a theoretical physicist at Caltech. "It's going to be wrong, because it doesn't take into account quantum mechanics. And quantum mechanics is certainly going to be important once you get to that place in the history of the universe."

So the very beginning of the universe remains pretty murky. Scientists think they can pick the story up at about 10 to the minus 36 seconds — one trillionth of a trillionth of a trillionth of a second — after the Big Bang.

At that point, they believe, the universe underwent an extremely brief and dramatic period of inflation, expanding faster than the speed of light. It doubled in size perhaps 100 times or more, all within the span of a few tiny fractions of a second.

(Inflation may seem to violate the theory of special relativity, but that's not the case, scientists say. Special relativity holds that no information or matter can be carried between two points in space faster than the speed of light. But inflation was an expansion of space itself.)

"Inflation was the 'bang' of the Big Bang," Filippenko told SPACE.com "Before inflation, there was just a little bit of stuff, quite possibly, expanding just a little bit. We needed something like inflation to make the universe big."

This rapidly expanding universe was pretty much empty of matter, but it harbored huge amounts of dark energy, the theory goes. Dark energy is the mysterious force that scientists think is driving the universe's current accelerating expansion.

During inflation, dark energy made the universe smooth out and accelerate. But it didn't stick around for long.

"It was just temporary dark energy," Carroll told SPACE.com. "It converted into ordinary matter and radiation through a process called reheating. The universe went from being cold during inflation to being hot again when all the dark energy went away."

Scientists don't know what might have spurred inflation. That remains one of the key questions in Big Bang cosmology, Filippenko said.

Another idea

Most cosmologists regard inflation as the leading theory for explaining the universe's characteristics — specifically, why it's relatively flat and homogeneous, with roughly the same amount of stuff spread out equally in all directions.

More from Space.com

Images: Peerng back to Big Bang
Video: Fog of early Universe seen

Various lines of evidence point toward inflation being a reality, said theoretical physicist Andy Albrecht of the University of California, Davis.

"They all hang together pretty nicely with the inflationary picture," said Albrecht, one of the architects of inflation theory. "Inflation has done incredibly well."

However, inflation is not the only idea out there that tries to explain the universe's structure. Theorists have come up with another one, called the cyclic model, which is based on an earlier concept called the ekpyrotic universe.

This idea holds that our universe didn't emerge from a single point, or anything like it. Rather, it "bounced" into expansion — at a much more sedate pace than the inflation theory predicts — from a pre-existing universe that had been contracting. If this theory is correct, our universe has likely undergone an endless succession of "bangs" and "crunches."

"The beginning of our universe would have been nice and finite," said Burt Ovrut of the University of Pennsylvania, one of the originators of ekpyrotic theory.

The cyclic model posits that our universe consists of 11 dimensions, only four of which we can observe (three of space and one of time). Our four-dimensional part of the universe is called a brane (short for membrane).

There could be other branes lurking out there in 11-dimensional space, the idea goes. A collision between two branes could have jolted the universe from contraction to expansion, spurring the Big Bang we see evidence of today.

Looking for gravitational waves

Soon, scientists may know for sure which theory — inflation or the cyclic model — is a better representation of reality.

For example, inflation likely would produce much stronger gravitational waves than an ekpyrotic "bounce," Filippenko said. So researchers are looking for any signs of these theoretical distortions of space time, which have yet to be observed.

The European Space Agency's Planck satellite, which launched in 2009, may find the elusive gravitational waves. It may also gather other evidence that could tip the scales either way, Ovrut said.
"These are things that, within the next 10 years, will be discussed and hopefully decided," Ovrut told SPACE.com.

The universe we know takes shape

Cosmologists suspect that the four forces that rule the universe — gravity, electromagnetism and the weak and strong nuclear forces — were unified into a single force at the universe's birth, squashed together because of the extreme temperatures and densities involved.

But things changed as the universe expanded and cooled. Around the time of inflation, the strong force likely separated out. And by about 10 trillionths of a second after the Big Bang, the electromagnetic and weak forces became distinct, too.

Just after inflation, the universe was likely filled with a hot, dense plasma. But by around 1 microsecond (10 to the minus 6 seconds) or so, it had cooled enough to allow the first protons and neutrons to form, researchers think.

In the first three minutes after the Big Bang, these protons and neutrons began fusing together, forming deuterium (also known as heavy hydrogen). Deuterium atoms then joined up with each other, forming helium-4.

Recombination: The universe becomes transparent

These newly created atoms were all positively charged, as the universe was still too hot to favor the capture of electrons.

But that changed about 380,000 years after the Big Bang. In an epoch known as recombination, hydrogen and helium ions began snagging electrons, forming electrically neutral atoms. Light scatters significantly off free electrons and protons, but much less so off neutral atoms. So photons were now much more free to cruise through the universe.

Recombination dramatically changed the look of the universe; it had been an opaque fog, and now it became transparent. The cosmic microwave background radiation we observe today dates from this era.

But still, the universe was pretty dark for a long time after recombination, only truly lighting up when the first stars began shining about 300 million years after the Big Bang. They helped undo much of what recombination had accomplished. These early stars — and perhaps some other mystery sources — threw off enough radiation to split most of the universe's hydrogen back into its constituent protons and electrons.

This process, known as reionization, seems to have run its course by around 1 billion years after the Big Bang. The universe is not opaque today, as it was before recombination, because it has expanded so much. The universe's matter is very dilute, and photon scattering interactions are thus relatively rare, scientists say.

Over time, stars gravitated together to form galaxies, leading to more and more large-scale structure in the universe. Planets coalesced around some newly forming stars, including our own sun. And 3.8 billion years ago, life took root on Earth.

Before the Big Bang?

While much about the universe's first few moments remains speculative, the question of what preceded the Big Bang is even more mysterious and hard to tackle.

For starters, the question itself may be nonsensical. If the universe came from nothing, as some theorists believe, the Big Bang marks the instant when time itself began. In that case, there would be no such thing as "before," Carroll said.

But some conceptions of the universe's birth can propose possible answers. The cyclic model, for example, suggests that a contracting universe preceded our expanding one. Carroll, as well, can imagine something existing before the Big Bang.

"It could just be empty space that existed before our Big Bang happened, then some quantum fluctuation gave birth to a universe like ours," he said. "You can imagine a little bubble of space pinching off through a fluctuation and being filled with just a little tiny dollop of energy, which can then grow into the universe that we see through inflation."

Filippenko also suspects something along those lines might be true.

"I think time in our universe started with the Big Bang, but I think we were a fluctuation from a predecessor, a mother universe," Filippenko said.

Will we ever know?

Cosmologists and physicists are working hard to refine their theories and bring the universe's earliest moments into sharper and sharper focus. But will they ever truly know what happened at the Big Bang?

It's a daunting challenge, especially since researchers are working at a 13.7-billion-year remove. But don't count science out, Carroll said. After all, 100 years ago, people understood very little about the universe. We didn't know about general relativity, for example, or quantum mechanics. We didn't know the universe was expanding, and we didn't know about the Big Bang.

"We know all these things now," Carroll said. "The pace of progress is actually astonishingly fast, so I would never give in to pessimism. There's no reason in the recent history of cosmology and physics to be pessimistic about our prospects for understanding the Big Bang."

Albrecht voiced similar optimism, saying we may one day even figure out what, if anything, existed before the Big Bang.

"I base my hope on the fact that cosmology has been so successful," he told SPACE.com. "It seems nature has sent us a clear message that we really can do science with the universe."

Friday, October 14, 2011

Doomsday comet' to pass by Earth

Excellent article about the our universe
Source: Yahoo 7 News
Space.com
October 15, 2011, 7:52 am

The moment long feared by conspiracy theorists is nearly upon us: The "doomsday comet" Elenin will make its closest approach to Earth on Oct. 16.

Or what's left of it will, anyway.

Comet Elenin started breaking up in August after being blasted by a huge solar storm, and a close pass by the sun on Sept 10 apparently finished it off, astronomers say.

So what will cruise within 35.4 million kilometers of our planet Sunday is likely to be a stream of debris rather than a completely intact comet.

And the leftovers of Elenin won't return for 12,000 years, astronomers say.

"Folks are having trouble finding it, so I think it's probably dead and gone," said astronomer Don Yeomans of the Near-Earth Object Program Office at NASA's Jet Propulsion Laboratory in Pasadena, California.
That means it probably won't present much of a skywatching show on Sunday, scientists have said.

The doomsday comet

Elenin's apparent demise may come as a relief to some folks, since apocalyptic rumors circulating on the Internet portrayed the comet as a major threat to Earth.

One theory claimed Elenin would set off havoc on Earth after aligning with other heavenly bodies, spurring massive earthquakes and tsunamis. Another held that Elenin was not a comet at all, but in fact a rogue planet called Nibiru that would bring about the end times on Earth.

More from Space.com
Top 10 strangest things in space
Fabulous deep space photos

After all, the comet's name could be taken as a spooky acronym: "Extinction-Level Event: Nibiru Is Nigh."

Those ideas were pure nonsense, Yeomans said.

"Elenin was a second-rate, wimpy little comet that never should have been noted for anything, really," he told SPACE.com. "It was not even a bright one."

Elenin's remains will not be the only objects about to make their closest pass of Earth. One day after the Elenin flyby, the small asteroid 2009 TM8 will zip close by. Like Elenin, it poses no risk of striking our home planet.

Asteroid 2009 TM8 is about 6.4 meters wide and the size of a schoolbus. It will come within 212,000 miles of Earth – just inside the orbit of the moon – when it zips by on Monday morning (Oct. 17).
Say goodbye to Elenin

Elenin was named after its discoverer, Russian amateur astronomer Leonid Elenin, who spotted it in December 2010. Before the icy wanderer broke up, its nucleus was likely 2 to 3 miles (3 to 5 km) in diameter, scientists say.
Amazing space photos. Photo: Getty Images
Elenin never posed any threat to life on Earth, Yeomans said. It was far too small to exert any appreciable influence on our planet unless it managed to hit us.

"Just driving to work every day in my subcompact car is going to have far more of a gravitational effect on Earth than this comet ever will," Yeomans said.

Elenin's supposed connection to earthquakes was just a correlation, and a weak one at that, he added. Relatively strong earthquakes occur every day somewhere on Earth, so it's easy — but not statistically valid — to blame some of them on the comet's changing position.

Yeomans views the frenzy over Elenin as a product of the Internet age, which allows loud and often uninformed voices to drown out the rather more prosaic results that scientists publish in peer-reviewed journals.

"It's a snowball effect on the Web," Yeomans said. "You get one or two folks who make an outrageous claim, and a bunch of others pile on. Some folks are actually making a living this way."
Elenin's crumbs will soon leave Earth in the rear-view mirror, speeding out on a long journey to the outer solar system. But Yeomans doesn't think the departure will keep the conspiracy theorists down for long.

"It's time to move on to the next armageddon," he said.

You can follow SPACE.com senior writer Mike Wall on Twitter: @michaeldwall. Follow SPACE.com for the latest in space science and exploration news on Twitter @Spacedotcom and on Facebook.

Wednesday, October 5, 2011

Comets a water source for thirsty early Earth

Excellent discover in the space
Source: Yahoo 7 News
Ben Hirschler, Reuters
October 6, 2011, 3:11 am

The comet Hartley is seen in this undated image courtesy of NASA. Astronomers have found the first comet with ocean-like water in a major boost to the theory that the celestial bodies were a significant source of water for a thirsty early Earth. REUTERS/NASA/HandoutLONDON (Reuters) - Astronomers have found the first comet with ocean-like water in a major boost to the theory that the celestial bodies were a significant source of water for a thirsty early Earth.
 
The intense heat of the planet immediately after it formed means any initial water would have quickly evaporated and scientists believe the oceans emerged around 8 million years later.

The puzzle is where the water, which is vital for life on Earth, came from.

Reuters ©                           Enlarge photo

Past analysis of water-ice from far-flung comets suggested they could have delivered no more than 10 percent of today's oceans because the chemical "fingerprints" did not match up.

But research from Paul Hartogh of Germany's Max Planck Institute for Solar System Research and colleagues published on Wednesday showed a comet called 103P/Hartley 2 has the same chemical composition as the Earth's oceans.

The finding substantially increases the amount of water that could have originated from comets, which are made up of rock and ice with a characteristic tail of gas and dust. Previous models of the early Earth implied most water came from asteroids.

In the case of Hartley 2, researchers using infrared instruments on the Hershel Space Observatory found that ice on the comet has a near identical "D/H" ratio to seawater. D/H measures the proportion of deuterium -- or heavy hydrogen, which has an extra neutron -- compared to ordinary hydrogen in water.

"It was a big surprise when we saw the ratio was almost the same as what we find in the Earth's oceans," Hartogh told Reuters.

"It means it is not true any more that a maximum of 10 percent of water could have come from comets. Now, in principle, all the water could have come from comets."

Hartogh, whose research was published online in Nature, believes Hartley 2, whose current orbit around the sun does not extend much beyond Jupiter, started life in a different part of the solar system than other comets studied.

It probably formed in the Kuiper belt, which lies about 30 to 50 times further from the sun than the Earth, while the others come from the Oort Cloud, some 5,000 times further away.

(Reporting by Ben Hirschler; Editing by Janet Lawrence)